NUCLEOTIDE SEQUENCE OF tRNAH FROM BREWER'S YEAST

J. WEISSENBACH, R. MARTIN and G. DIRHEIMER

Laboratoire de Toxicologie et de Biologie moléculaires, U.E.R. de Sciences pharmaceutiques, Université Louis Pasteur, 67083 Strasbourg, France

Received 27 October 1972

1. Introduction

Three major species of arginine-tRNA are found when brewer's yeast tRNA is fractionated by countercurrent distribution with the solvent of Holley [1, 2]. The first one, $tRNA_I^{Arg}$, with the lowest solubility in the organic phase, can be trapped in a metastable denatured state and has been purified to an extent of 40% by Lindahl et al. [3]. The third one, $tRNA_{III}^{Arg}$, has the highest solubility in the organic phase. It has been isolated [4] and sequenced [5] in our laboratory. We present here the primary structure of the second one, $tRNA_{II}^{Arg}$, which we have obtained recently with a purification of 80% [6].

2. Experimental

Complete pancreatic and T_1 ribonuclease digests were fractionated either by chromatographic or by electrophoretic methods [7–9]. The separated oligonucleotides were sequenced by techniques published elsewhere [8, 9]. Larger oligonucleotides produced by partial T_1 ribonuclease digestion were isolated by column chromatography [10, 11] and identified on the basis of their complete hydrolysis with T_1 and pancreatic ribonucleases. The overlapping of the larger fragments permitted to establish the linear order of the nucleotides of $tRNA_{II}^{Arg}$ (fig. 1).

3. Results and discussion

The results of the analyses show that $tRNA_{II}^{Arg}$ is composed of 76 nucleotide residues including 13

minor nucleotides. The sequence of tRNA $_{\rm II}^{\rm Arg}$ can be written in the typical planar cloverleaf form suggested by Holley et al. [12] (fig. 3) with an aminoacyl stem seven base pairs long, two five base paired stems for the T- Ψ -C and the anticodon loops and a three base pair stem for the dihydrouracil loop. The T- Ψ -C and anticodon loops contain seven residues as in other known tRNA structures [13]. The hU loop contains 10 nucleotides. tRNA $_{\rm II}^{\rm Arg}$ has a p Ψ p 5'-terminal end like tRNA $_{\rm II}^{\rm Arg}$ from yeast [14] and a G-C-C-A 3' terminal end.

The first nucleotide after the amino acid stem, position 8 from the 5' terminal end, is an U or a s⁴U in all sequenced tRNA's [13] with one exception: tRNA^{His} which has also a s⁴U in the first position after the amino acid stem but this position is the 9th from the 5' terminal end [15]. The tRNA^{Arg}_{II} has an U in position 8 from the 5' terminal end.

The sequence m¹G-m²G in positions 9 and 10 has been found previously in tRNA^{Tyr} from *Torulopsis utilis* [16], in tRNA^{Trp} [17] and in tRNA^{III} from yeast [5].

As in 7 other sequenced tRNA's [13] a sequence A-A-hU is found in tRNA $_{II}^{Arg}$ which could take the tertiary structure proposed by Levitt [18] with a base pair between A_{17} and U_{48} .

All sequenced tRNA's concerned with protein biosynthesis have a sequence G-G or Gm-G in positions corresponding to positions 17 and 18 in tRNA_{II} which follows also this general law. This sequence is followed by a hU as in all yeast tRNA's of known structure except tRNA^{Phe} [19] and tRNA_{III} [5].

The tRNA_{II} has a m₂²G in position 26. The extra arm has a sequence of 5 nucleotides A-G-A-hU-U.

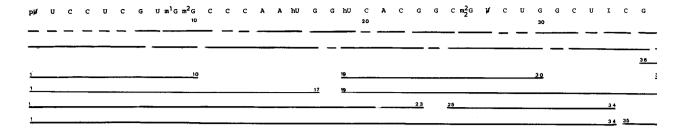


Fig. 1. The two first lines show fragments from complete pancreatic and T_1 ribonuclease digestion. The third line shows t digestion.

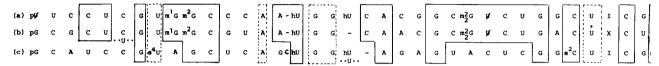


Fig. 2. Comparison of nucleotide sequences in brewer's yeast tRNA_{II}^{Arg} (a), tRNA_{III}^{Arg} (b) and E. coli tRNA_I^{Arg}. The com not taken into account for this comparison.

The same sequence is found in the extra arm of tRNA_{III}^{Arg} from brewer's yeast [5].

The sequence $G-T-\Psi-C$ has been found so far in

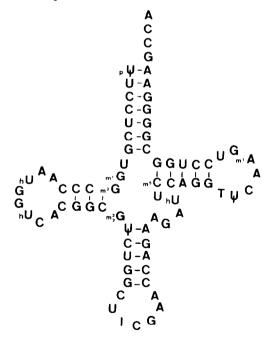
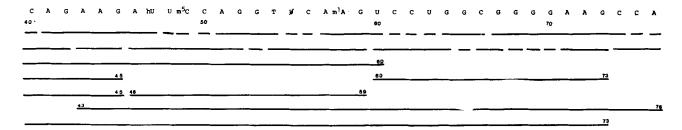


Fig. 3. Clover leaf model of the nucleotide sequence of brewer's yeast $tRNA_{II}^{Arg}$. Standard abbrevations are used for the common nucleosides. Other abbrevations are: ψ , pseudouridine; m^1G , 1-methylguanosine; m^2G , 2-methylguanosine; hU, dihydrouridine; m_2^2G , 2-dimethylguanosine; I, inosine; m^5C , 5-methylcytidine; T, ribosylthymine; m^1A , 1-methyladenosine.


all sequenced tRNA's concerned with protein biosynthesis [13]. In tRNA $_{II}^{Arg}$ it is followed by an A an a m^1A .

The anticodon is I—C—G. This could correspond t 3 of the 6 codons of arginine C—G—A, C—G—U, C—G—C [20].

Fig. 2 shows the comparison between the structur of the tRNA^{Arg} II and III of brewer's yeast and of tRNA^{Arg} from *E. coli* [21].

Between the tRNA's^{Arg} from yeast there are 49 similarities, 35 if we don't take into account the nucleotides common to all tRNA's of known structu concerned with protein synthesis [13]. The sequence 7–11, 24–30 and 40–48 are the longest common ones. They are all localized around the center of the planar clover leaf model. The tRNA's^{Arg} of yeast are recognized by the same aminoacyl-tRNA synthetase. It is possible that these sequences participate in the arginyl-tRNA synthetase recognition site. We are now in process of studying the sequence of yeast tRNA^{Ar} (the third substrate for this enzyme) to see if it also contains these common sequences.

There are very few analogies between the tRNA's' of yeast and that of *E. coli*. If we don't take into account the features common to all sequenced tRNA [13] there are 17 analogies and the two longest ones are only dinucleotides. It must be emphasized that there is no cross recognition between *E. coli* tRNA and yeast arginyl tRNA synthetase or vice versa [22,

resulting from the complete digestions. The four last lines represent some of the large fragments obtained after partial T₁ ribonuclease

are enclosed with brackets. Sequences in dotted boxes are common to all tRNA's. The differences in the state of modification are

Acknowledgements

This study has been supported by grants from the "Centre National de la Recherche Scientifique" L.A., no. 119 and from the "Commissariat à l'Energie atomique", Service de Biologie. The authors thank Mrs C. Fix for technical assistance and Mrs M. Schlegel for the fractionation of tRNA by countercurrent distribution.

References

- [1] R.W. Holley, J. Apgar, Q.A. Everett, J.T. Madison, S.H. Merrill and A. Zamir, Cold Spring Harbor Symp. Quant. Biol. 28 (1963) 117.
- [2] G. Dirheimer and J.P. Ebel, Bull. Soc. Chim. Biol. 49 (1967) 1679.
- [3] T. Lindahl, A. Adams and J.R. Fresco, J. Biol. Chem. 242 (1967) 3129.
- [4] B. Kuntzel and G. Dirheimer, Nature 219 (1968) 720.
- [5] B. Kuntzel, J. Weissenbach and G. Dirheimer, FEBS Letters 25 (1972) 189.
- [6] J. Weissenbach, C. Werner and G. Dirheimer, Biochimie 54 (1972) 111.
- [7] J. Gangloff, G. Keith and G. Dirheimer, Bull. Soc. Chim. Biol. 52 (1970) 125.
- [8] J. Gangloff, G. Keith, J.P. Ebel and G. Dirheimer, Biochim. Biophys. Acta 259 (1972) 198.

- [9] J. Weissenbach, R. Martin and G. Dirheimer, Biochim. Biophys. Acta, submitted for publication.
- [10] J. Gangloff, G. Keith, J.P. Ebel and G. Dirheimer, Biochim. Biophys; Acta 259 (1972) 210.
- [11] J. Weissenbach, R. Martin and G. Dirheimer, Biochim. Biophys. Acta, submitted for publication.
- [12] R.W. Holley, J. Apgar, G.A. Everett, J.T. Madison, M. Marquisee, S.H. Merrill, J.R. Penswick and A. Zamir, Science 147 (1965) 1462.
- [13] G. Dirheimer, J.P. Ebel, J. Bonnet, J. Gangloff, G. Keith, B. Krebs, B. Kuntzel, A. Roy, J. Weissenbach and C. Werner, Biochimie 54 (1972) 127.
- [14] J.T. Madison, S.J. Boguslawski and G.H. Teetor, Science 176 (1972) 687.
- [15] C.E. Singer and G.R. Smith, J. Biol. Chem. 247 (1972) 2989.
- [16] S. Hashimoto, M. Miyazaki and S. Takemura, J. Biochem. 65 (1969) 659.
- [17] G. Keith, A. Roy, J.P. Ebel and G. Dirheimer, FEBS Letters 17 (1971) 306.
- [18] M. Levitt, Nature 224 (1969) 759.
- [19] U.L. RajBhandary, S.H. Chang, A. Stuart, R.D. Faulkner, R.M. Hoskinson and H.G. Khorana, Proc. Natl. Acad. Sci. U.S. 57 (1967) 751.
- [20] F.H.C. Crick, J. Mol. Biol. 19 (1966) 548.
- [21] K. Murao, T. Tanabe, F. Ishii, M. Namiki and S. Nishimura, Biochem. Biophys. Res. Commun. 47 (1972) 1332.
- [22] S. Benzer and B. Weisblum, Proc. Natl. Acad. Sci. U.S. 47 (1961) 1149.
- [23] B.P. Doctor and J.A. Mudd, J. Biol. Chem. 238 (1963) 3677.